

ANNUAL REPORT 2007

UIUC, June 12, 2007

Flow in a Funnel Mold

Bret Rietow (MS Student) & Brian G. Thomas

Department of Mechanical Science and Engineering University of Illinois at Urbana-Champaign

Objectives

- Model fluid flow in a funnel mold caster
- Compare steel flow with water models
- Investigate the effect of casting speed

Dimensions:

Narrow Face: 90 mm Wide Face: 1450 mm Mold Length: 1200 mm Max. Funnel Width: 170 mm SEN Submergence: 265 mm

Jet Characteristics

Casting Speed (m/min)	3.6
Jet Speed (m/s)	1.14
Vertical Jet Angle (degrees)	79.4
Port-to-bore Ratio	1.62
Back Flow Zone Percentage	<4%

Good uniform spread of flow leaving ports despite a large port to bore ratio.

Steep downward jet, resulting in a slower flow on the top fluid surface.

A high casting speed can be run with this nozzle without EMBR.

•

Model Validation

 Comparison to previous work performed by Quan Yuan on a parallel mold thin-slab caster

Parameter/Property	Case 2-S
Mold Width (mm)	984
Mold Thickness (mm)	132
Mold Length (mm)	1200
Domain Width (mm)	984 (top) 934.04 (domain bottom)
Domain Thickness (mm)	132 (top) 79.48 (domain bottom)
Domain Length (mm)	2400
Nozzle Port Height × Thickness (mm × mm)	75 × 32 (inner bore)
Bottom nozzle Port Diameter (mm)	32
SEN Submergence Depth (mm)	127
Casting Speed (mm/s)	25.4
Fluid Kinematic Viscosity (m ² /s)	$7.98 imes 10^{-7}$

inuous Casting Consortium

0

-0.1

-0.2

0.

-0.44 -0.34

ô

-0.24

-0.1 ń

Distance from center, x(m)

-0.14 -0.04 0.06 0.16

Distance from Center [m]

0.03

-0.02 õ

-0.07

-0.12

-0.17

-0.22

-0.27 -0.64 -0.54

Ĕ 0.06

0.04

0.02

0

02 0.

•

0.26 0.36 0.46 0.56

Funnel Mold Model

Solidifying steel shell greatly affects shape of liquid pool

Casting Speed	3.6 m/min
Mold Width (mm)	1450
Mold Thickness in top funnel region (mm)	170
Mold Thickness at narrow face (mm)	90
Mold Length (mm)	1200
Domain Width (mm)	1450 (top) 1414 (domain bottom)
Domain Thickness (mm)	90 (top) 50.84 (domain bottom)
Domain Length (mm)	2500
Nozzle 2: Port Effective Height × Thickness (mm × mm)	201.53 × 28
SEN Submergence Depth (mm)	265
Casting Speed (m/min)	3.6
Fluid Kinematic Viscosity (m ² /s)	8.57×10^{-7}

•

•

- Increasing casting speed has little effect on singlephase flow pattern and jet impingement location (-0.835 m below the top surface). Lower recirculation region is extended further down the strand.
- Velocity increases almost linearly with casting speed. Maximum surface velocity increases with casting speed, from 0.48 m/s (3.6 m/min) to 0.57m/s (4.8 m/min)
- Increasing casting speed produces *quadratically* increasing top surface wave height and profile
- The highest point of the standing wave occurs near the meniscus and slopes downward to the SEN.

University of Illinois at Urbana-Champaign

Acknowledgements

Metals Processing Simulation Lab

- Continuous Casting Consortium Members (Algoma, Baosteel, Corus, Delavan, Labein, LWB Refractories, Mittal Riverdale, Nucor, Postech, Steel Dynamics)
- National Science Foundation – GOALI DMI 05-00453 (Online)
- National Center for Supercomputing Applications (NCSA) at UIUC
- Fluent, Inc.
- Former UIUC researchers: L. Zhang and J. Aoki

25

BG Thomas